

CYCLONE YASI

Category 5

LANDFALL: Expected to hit between Cairns and Cardwell at 10pm. SIZE: 500km wide EYE: 100km wide WIND GUSTS: 320km/h expected STORM SURGE: Up to 9m expected RAINFALL: Up to 1000mm expected DAMAGE: Potentially large as it is heading towards built-up areas

CYCLONE TRACY

Category: 4

LANDFALL: Darwin in the early hours of December 25, 1974. SIZE: 50km wide EYE: 12km wide

WIND GUSTS: 217km/h recorded as the measuring system failed. Estimated up to 300km/h. STORM SURGE: 1.6m in the city harbour, 4m at Casuarina Beach RAINFALL: 195mm on Darwin in under eight hours DAMAGE: 65 people killed,

including 16 lost at sea, and 25,000 homes destroyed.

CYCLONE Larry

Category: 4 (briefly Category 5) LANDFALL: near Innisfail on the morning of March 20, 2006 SIZE: 100km wide EYE: 25km wide WIND GUSTS: 294km/h STORM SURGE: 2.3m (inundation to 4.9m in areas without gauges) RAINFALL: 500mm in 72hrs near Tully

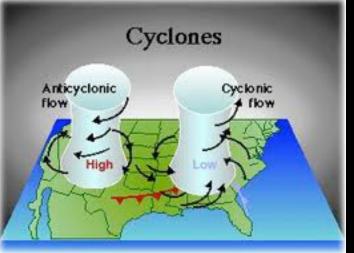
DAMAGE: Severe damage to infrastructure and crops and a damage bill of \$500 million-plus

HURRICANE Katrina

Category: 5

LANDFALL: Florida, Louisiana and Mississippi, August 2005. SIZE: 640km wide EYE: 51km wide WIND GUSTS: 280km/h STORM SURGE: Up to 8.5m RAINFALL: 300mm over eastern Louisiana. DAMAGE: 1833 people killed, more than \$100 billion damage.

What types of Weather are Cyclonic?



Hurricanes

HURRICANE - LOW PRESSURE TROPICAL STORM THAT STARTS IN THE WESTERN ATLANTIC AND REACHES WINDS ABOVE 74 MPH

Hurricane

HURRICANE STATISTICS

- LARGEST OF ALL THE STORMS
- APPROXIMATELY 10 PER YEAR
- NEARLY 400 DEATHS PER YEAR

SAFFIR-SIMPSON SCALE -

• SYSTEM FOR CLASSIFYING HURRICANES

Saffir-Simpson Scale

Category	Wind (mph)	Pressure (inches)	Surge (feet)		
1	74-95	> 28.94	4 - 5		
2	96-110	28.50-28.93	6 - 8		
3	111-130	27.91-28.49	9 - 12		
4	131-155	27.17-27.90	13 - 18		
5	> 155	< 27.16	> 18		

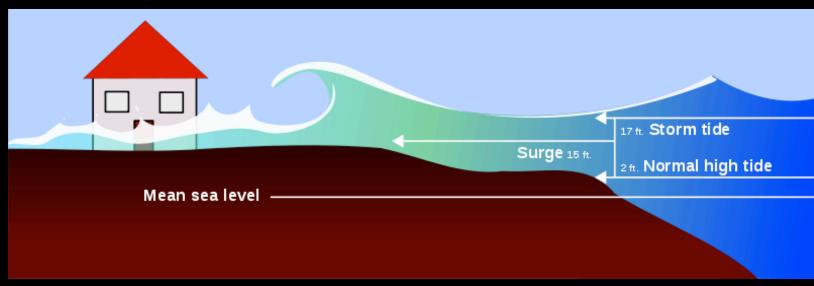
Hurricane Dangers

• SEVERE WINDS FROM 74 - 155

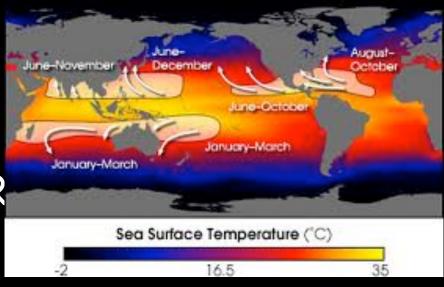


Cyclonic Weather Hurricane Dangers

WIND DIRECTION IS COUNTERCLOCKWISE AND INWARD



Hurricane Dangers


 STORM SURGE – A DOME OF WATER 40 TO 60 MILES LONG THAT MOVES ONTO SHORE NEAR THE LANDFALL POINT OF THE HURRICANE

Cyclonic Weather Hurricane Formation

THE SUN HEATS UP OCEAN WATER (ESPECIALLY NEAR THE EQUATOR)

2. BY THE END OF SUMMER OCEAN TEMPERATURES REACH INTO THE 80'S

3. A THUNDERSTORM MOVES WESTWARD OFF OF AFRICA AND INTO THE ATLANTIC OCEAN

- 4. WHEN UPPER WIND VELOCITIES ARE LOW, THUNDERSTORMS ARE GIVEN A CHANCE TO GAIN STRENGTH
- 5. THE FAST RISING AIR (SUPPLIED BY THE WARM OCEAN) ALLOWS THE THUNDERSTORM TO GAIN STRENGTH
- 6. AS IT GROWS, EARTH'S ROTATION CAUSES IT TO SPIN COUNTERCLOCKWISE (CORIOLIS EFFEC
- 7. AS THEY BUILD A THUNDERSTORM CHANGES

TORNADO – A ROTATING COLUMN OF AIR RANGING IN WIDTH FROM A FEW YARDS TO MORE THEN A MILE AND WHIRLING AT DESTRUCTIVELY HIGH WINDS

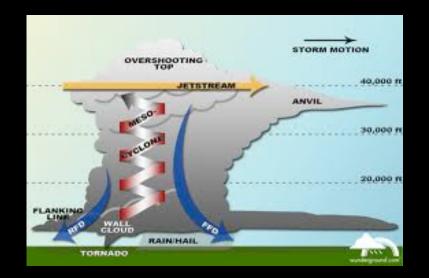
TORNADO STATISTICS

- MOST VIOLENT STORMS
- APPROXIMATELY 1000 PER YEAR
- NEARLY 50 DEATHS PER YEAR

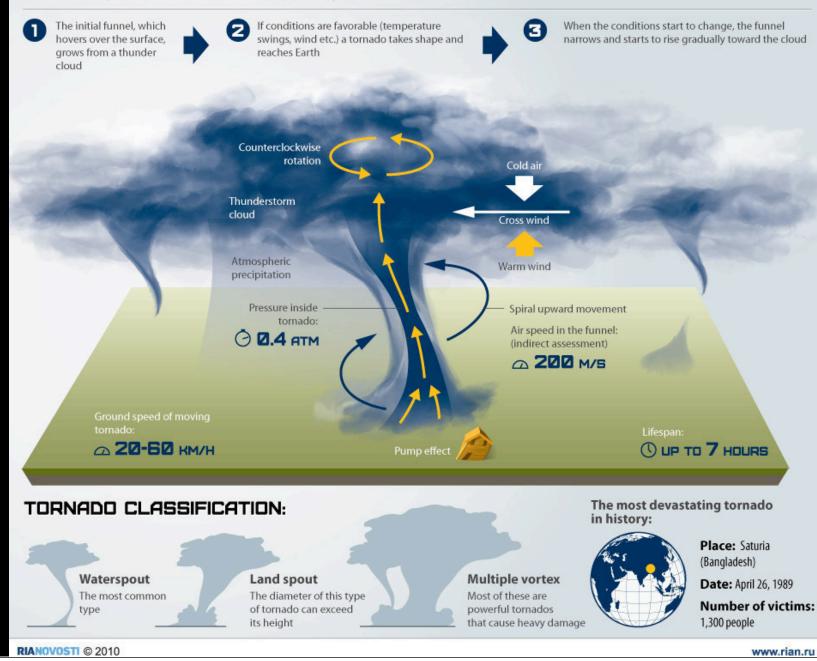
TORNADO DANGERS

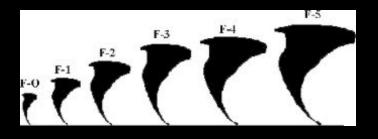
• SEVERE WINDS FROM 250 MPH AND ABOVE

TORNADO FORMATION

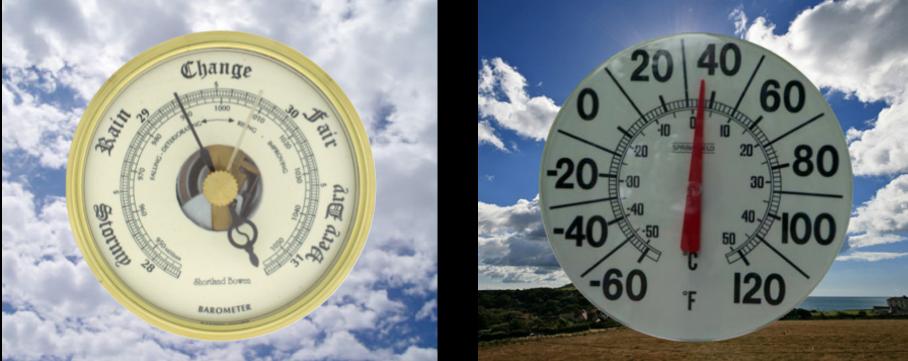

1. DEVELOP FROM AN INTENSE THUNDERSTORM

2. HEATING IS VERY INTENSE AND WARM AIR RISES IN STRONG CONVECTION CURRENTS


3. THE RISING AIR CAUSES A LOW PRESSURE CENTER

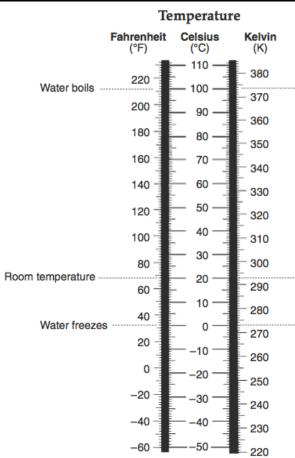

4. AS AIR RUSHES INTO THE CENTER IT STARTS TO SPIN UPWARD

TORNADO FORMATION


Tornados form when two large air masses of varying temperature and humidity collide, with warm air in the lower layers and cold air in the upper layers

TORNADO CLASSIFICATION

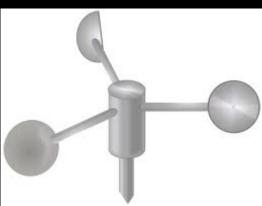
	HE FUJUITA-PEAI NADO INTENSITY		
CLASSIFICATION	WIND SPEED	DAMAGE	
F0	40–72 mph	Mild	
F1	73–112 mph	Moderate	
F2	113–157 mph	Significant	
F3	158–206 mph	Severe	
F4	207–260 mph	Devastating	
F5	260–319 mph	Incredible	
F6	319–379 mph	Inconceivable	

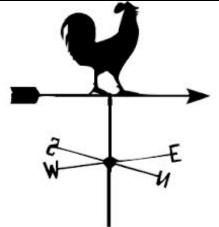


WHAT TOOLS DO WE USE TO HELP PREDICT THE WEATHER?

Weather

Instruments THERMOMETER – INSTRUMENT USED TO MEASURE TEMPERATURE


- CELSIUS
 - DIFFERENT SCALES INCLUDE:
 - CELSIUS
 - FAHRENHEIT
 - KELVIN


- BAROMETER INSTRUMENT USED TO MEASURE AIR PRESSURE
 - DIFFERENT SCALES INCLUDE:
 - INCHES OF MERCURY
 - MILLIBARS

Pre	ssure
millibars (mb)	inches (in of Hg*)
1040.0	30.70
1036.0	30.60
1032.0	30.50
1028.0	30.40
1024.0	30.30
	1 30.20
1020.0	30.10
1016.0	30.00
1012.0	29.90
1008.0	29.80
1004.0-	29.70
	₹ ^{29.60}
1000.0-	29.50
996.0	29.40
992.0	₹ ^{29.30}
988.0	29.20
984.0	1 29.10
980.0	1 29.00
	28.90
976.0	28.80
972.0	1 28.70
968.0	28.60
*Ho -	1 28.50

- ANEMOMETER INSTRUMENT USED TO MEASURE WIND SPEED
 - DIFFERENT SCALES INCLUDE:
 - KNOTS
 - MILES PER HOUR

- WEATHER VANE INSTRUMENT USED TO MEASURE WIND DIRECTION
 - MEASURES DIRECTION USING COMPASS
 DIRECTIONS

 SLING PSYCHROMETER – INSTRUMENT USED TO MEASURE DEW POINT AND RELATIVE HUMIDITY

• **RELATIVE HUMIDITY** – THE AMOUNT OF WATER VAPOR IN THE AIR AT ANY GIVEN TIME

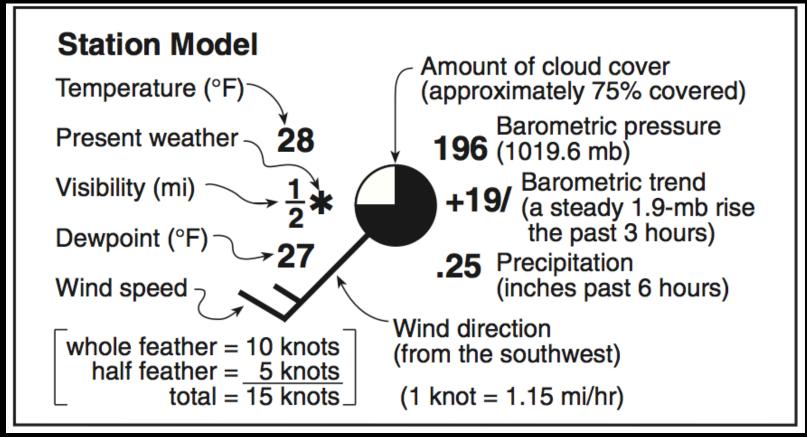
 TO CALCULATE RELATIVE HUMIDITY YOU NEED A DRY BULB TEMPERATE, DIFFERENCE IN WET BULB AND DRY BULB TEMPERATURE, AND THE E.S.R.T.

Weather

Instruments

Dry-Bulb Tempera-	Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)															
ture (°C)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
-20	100	28														
-18	100	40														
-16	100	48														
-14	100	55	11													
-12	100	61	23													
-10	100	66	33													
-8	100	71	41	13												
-6	100	73	48	20												
-4	100	77	54	32	11											
-2	100	79	58	37	20	1										
0	100	81	63	45	28	11										
2	100	83	67	51	36	20	6									
4	100	85	70	56	42	27	14									
6	100	86	72	59	46	35	22	10								
8	100	87	74	62	51	39	28	17	6							
10	100	88	76	65	54	43	33	24	13	4						
12	100	88	78	67	57	48	38	28	19	10	2					
14	100	89	79	69	60	50	41	33	25	16	8	1				
16	100	90	80	71	62	54	45	37	29	21	14	7	1			
18	100	91	81	72	64	56	48	40	33	26	19	12	6			
20	100	91	82	74	66	58	51	44	36	30	23	17	11	5		
22	100	92	83	75	68	60	53	46	40	33	27	21	15	10	4	
24	100	92	84	76	69	62	55	49	42	36	30	25	20	14	9	4
26	100	92	85	77	70	64	57	51	45	39	34	28	23	18	13	9
28	100	93	86	78	71	65	59	53	47	42	36	31	26	21	17	12
30	100	93	86	79	72	66	61	55	49	44	39	34	29	25	20	16

Relative Humidity


Weather Instruments • DEW POINT - THE TEMPERATURE AT WHICH AIR MUST BE COOLED FOR WATER VAPOR TO CONDENSE

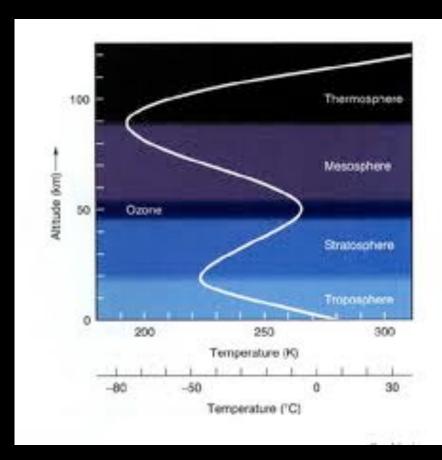
 TO CALCULATE POINT YOU NEED A DRY BULB TEMPERATE, DIFFERENCE IN WET BULB AND DRY BULB TEMPERATURE, AND THE E.S.R.T.

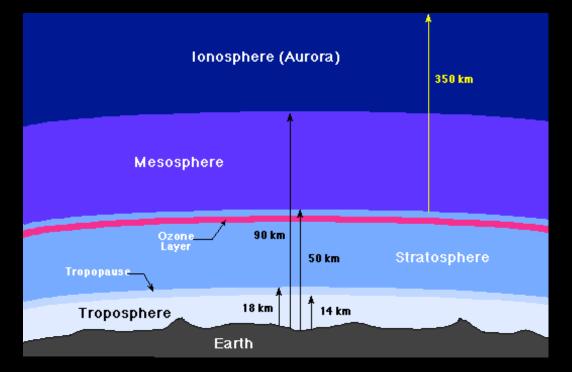
Dry-Bulb Tempera-			Diff	erenc	e Bet	ween	Wet-E	Bulb a	nd Dr	y-Bull	b Tem	perat	ures (C°)		
ture (°C)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
-20	-20	-33														
-18	-18	-28														
-16	-16	-24														
-14	-14	-21	-36													
-12	-12	-18	-28													
-10	-10	-14	-22													
-8	-8	-12	-18	-29												
-6	-6	-10	-14	-22												
-4	-4	-7	-12	-17	-29											
-2	-2	-5	-8	-13	-20											
0	0	-3	-6	-9	-15	-24										
2	2	-1	-3	-6	-11	-17										
4	4	1	-1	-4	-7	-11	-19									
6	6	4	1	-1	-4	-7	-13	-21								
8	8	6	3	1	-2	-5	-9	-14								
10	10	8	6	4	1	-2	-5	-9	-14	-28						
12	12	10	8	6	4	1	-2	-5	-9	-16						
14	14	12	11	9	6	4	1	-2	-5	-10	-17					
16	16	14	13	11	9		4	1	-1	-6	-10	-17				
18	18	16	15	13	11	9	7	4	2	-2	-5	-10	-19			
20	20	19	17	15	14	12	10	7	4	2	-2	-5	-10	-19		
22	22	21	19	17	16	14	12	10	8	5	3	-1	-5	-10	-19	
24	24	23	21	20	18	16	14	12	10	8	6	2	-1	-5	-10	-18
26	26	25	23	22	20	18	17	15	13	11	9	6	3	0	-4	-9
28	28	27	25	24	22	21	19	17	16	14	11	9	7	4	1	-3
30	30	29	27	26	24	23	21	19	18	16	14	12	10	8	5	1

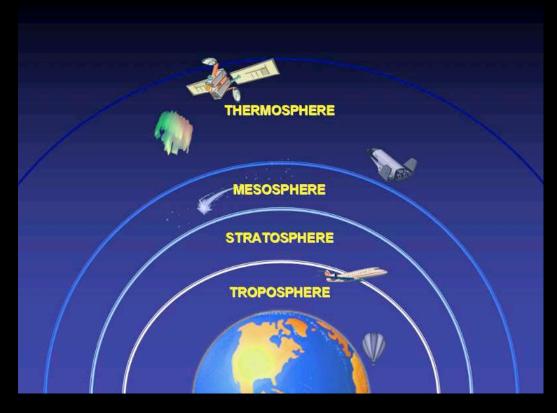
Dew Point

• **STATION MODEL** – SYMBOL ON A WEATHER MAP THAT ILLUSTRATE ALL THE WEATHER CONDITIONS AT THAT LOCATION

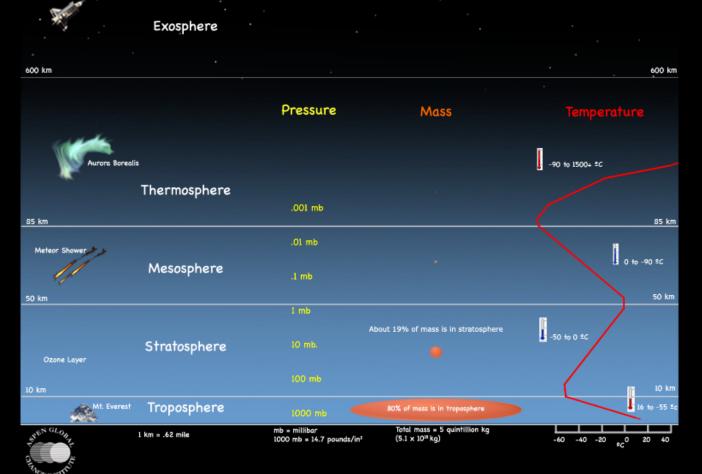
Station Models ESRT


Weather Variables


WHAT WEATHER VARIABLES HELP PREDICT WEATHER?

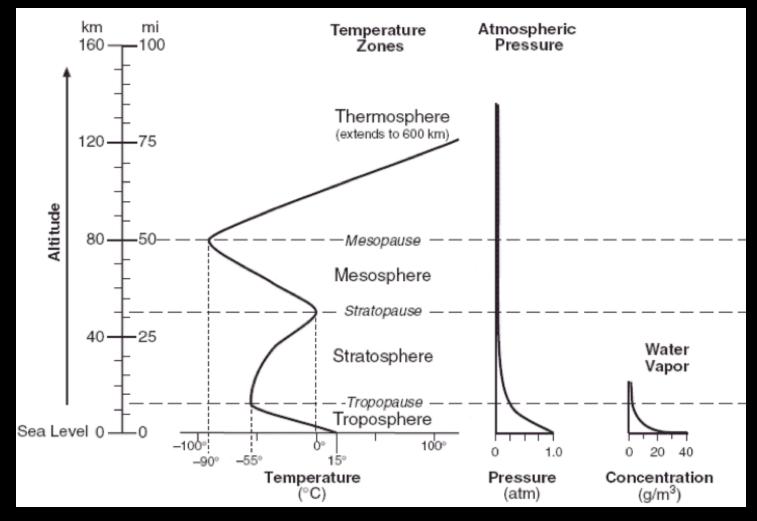

TROPOSPHERE – THE LOWEST PORTION OF THE ATMOSPHERE WHERE TEMPERATURE DECREASES

•WEATHER OCCURS IN THIS LAYER ONLY



STRATOSPHERE – A REGION OF THE ATMOSPHERE WHERE TEMPERATURE INCREASES

MESOSPHERE – A REGION OF THE ATMOSPHERE WHERE TEMPERATURE DECREASES AGAIN


THERMOSPHERE - THE OUTER MOST SHELL OF THE ATMOSPHERE WHERE TEMPERATURE INCREASES

Weather Patterns

Structure of the Atmosphere

Space Shuttle

Layers of the Atmosphere ESRT

WEATHER - THE PRESENT CONDITION OF THE ATMOSPHERE --- INCLUDING TEMPERATURE, PRESSURE, WIND, HUMIDITY, AND MOVEMENT

• CHANGES ARE DUE MAINLY TO UNEQUAL HEATING OF LAND MASSES, OCEANS, AND THE ATMOSPHERE

TEMPERATURE - THE HEAT ENERGY PRESENT IN THE ATMOSPHERE AT THAT LOCATION

• INFLUENCES AFFECTING TEMPERATURE ARE SOLAR RADIATION, ANGLE OF INSOLATION, HOURS OF DAYLIGHT, AND REFLECTION OFF THE ATMOSPHERE

AIR PRESSURE - THE FORCE EXERTED ON A UNIT OF AREA BY THE AIR THAT IS EXERTED EQUALLY IN EVERY DIRECTION

• AIR IS A MIXTURE OF GASES WITH MOLECULES THAT ARE FAST MOVING AND FAR APART

• AIR PRESSURE INCREASES AS YOU DECREASE YOUR ELEVATION

• AIR PRESSURE DECREASES AS YOU INCREASE YOUR ELEVATION

- **AIR CURRENTS** RISING OR SINKING MOVEMENT OF AIR PERPENDICULAR TO THE GROUND
- WIND THE HORIZONTAL MOVEMENT OF AIR PARALLEL TO THE EARTH'S SURFACE
 - WIND BLOWS FROM AREAS OF HIGH PRESSURE TO AREAS OF LOW PRESSURE

• SEA BREEZE - DURING THE DAY LAND HEATS UP FASTER THAN THE WATER, THUS CREATING A LOW PRESSURE ZONE OVER THE LAND

• WIND BLOWS FROM AREAS OF HIGH PRESSURE TO AREAS OF LOW PRESSURE

Warm air rises, cools and descends

Lower temperature, higher pressure

Higher temperature, lower pressure

Sea Breeze

• LAND BREEZE - DURING THE NIGHT LAND COOLS FASTER WHILE WATER HOLDS IT'S HEAT, THUS CREATING A LOW PRESSURE ZONE OVER THE WATER

• WIND BLOWS FROM AREAS OF HIGH PRESSURE TO AREAS OF LOW PRESSURE

Warmer air rises, cools and descends

Lower temperature, higher pressure

Higher temperature, lower pressure

Land Breeze

CLOUD FORMATION

• AIR IS WARMED FROM SUN HEATED SURFACES BECOMING LESS DENSE AND RISING

• AS IT RISES IT EXPANDS AND DECREASES IN TEMPERATURE AND PRESSURE

CLOUD FORMATION

• WATER VAPOR IN THE AIR THEN CONDENSES AS THE AIR IS COOLED TO THE DEW POINT

• **CONDENSATION** – THE PROCESS WHICH GAS TURNS TO A LIQUID

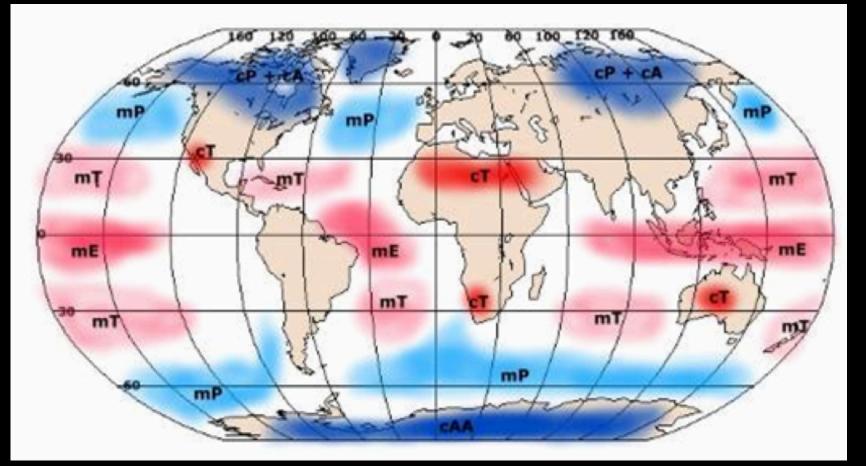
• REMEMBER RECC

• RISES - EXPANDS - COOLS - CONDENSES

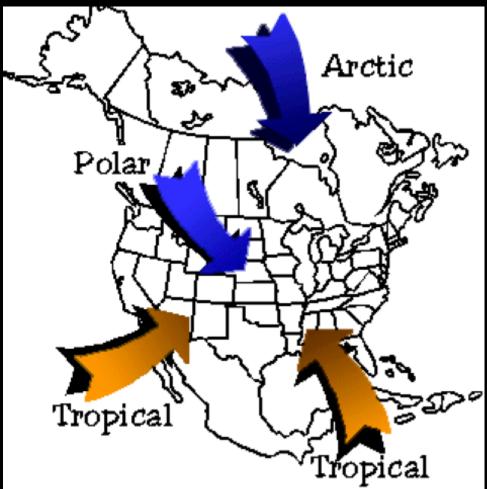
Air Masses and Fronts

HOW ARE AIR MASSES AND FRONTS RELATED TO WEATHER?

• <u>AIR MASS</u> – CHARACTERISTICS OF THE AIR IDENTIFIED BY TEMPERATURE AND MOISTURE


 <u>SOURCE REGION</u> - LOCATION OVER WHICH AN AIR MASS GETS ITS CHARACTERISTICS

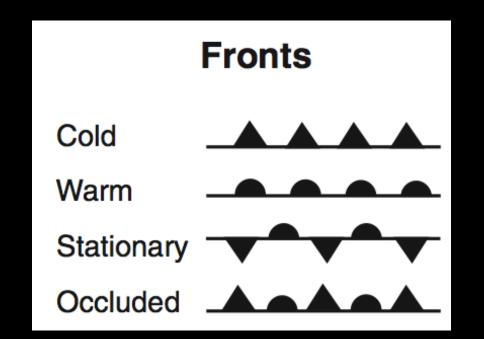
• AIR MASSES ARE NAMED AFTER THEIR SOURCE REGION AND ARE DESIGNATED BY LETTERS


Air Masses

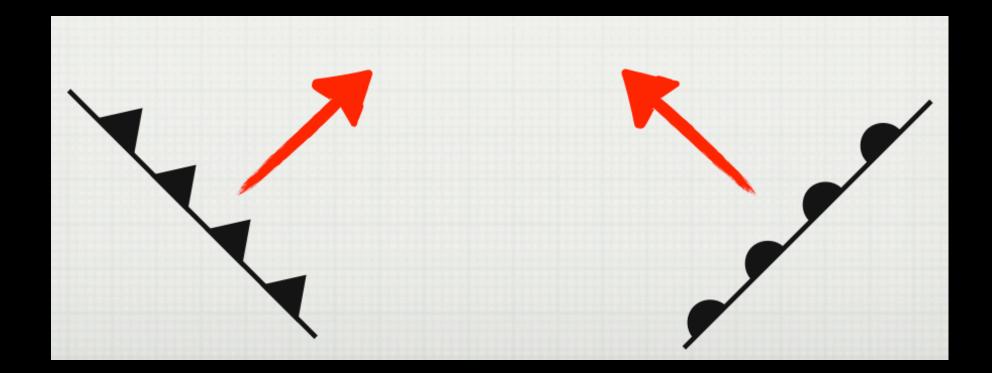
- cA continental arctic
- cP continental polar
- cT continental tropical
- mT maritime tropical
- mP maritime polar

ESRT

Air Masses & Source Regions

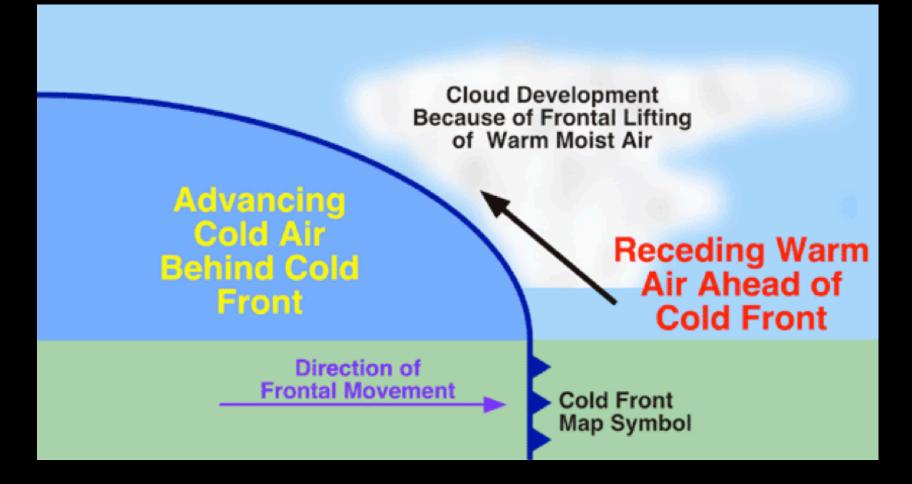


Air Masses & Source Regions



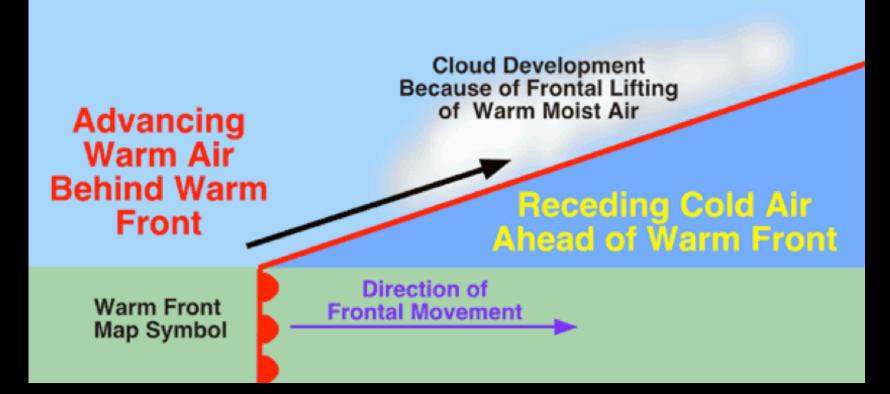
WHEN TWO UNLIKE AIR MASSES COLLIDE A WEATHER FRONT IS CREATED

THE BOUNDARY BETWEEN THE TWO DIFFERENT AIR MASSES IS REPRESENTED ON A MAP WITH A SYMBOL



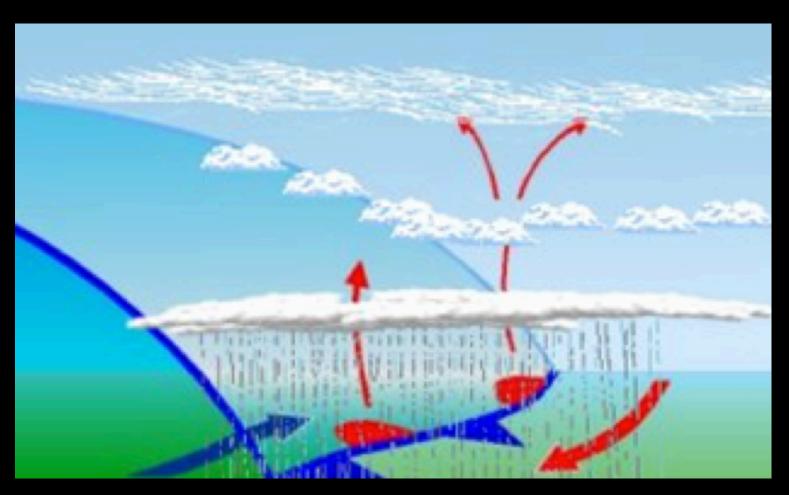
THE SIDE THAT THE SHAPES ARE ON SHOWS THE DIRECTION THE FRONT IS MOVING TOWARDS

<u>COLD FRONT</u> – A BOUNDARY WHERE MORE DENSE COLD AIR ADVANCES UNDER LESS DENSE WARM AIR PUSHING IT UPWARD


• WEATHER: THUNDERSTORMS, HEAVY RAIN, AND A SHARP DECREASE IN TEMPERATURE

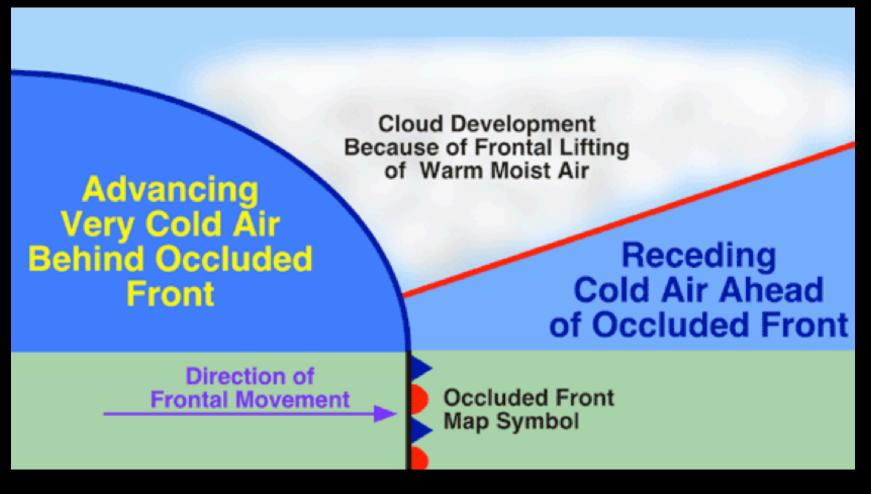
Cold Front

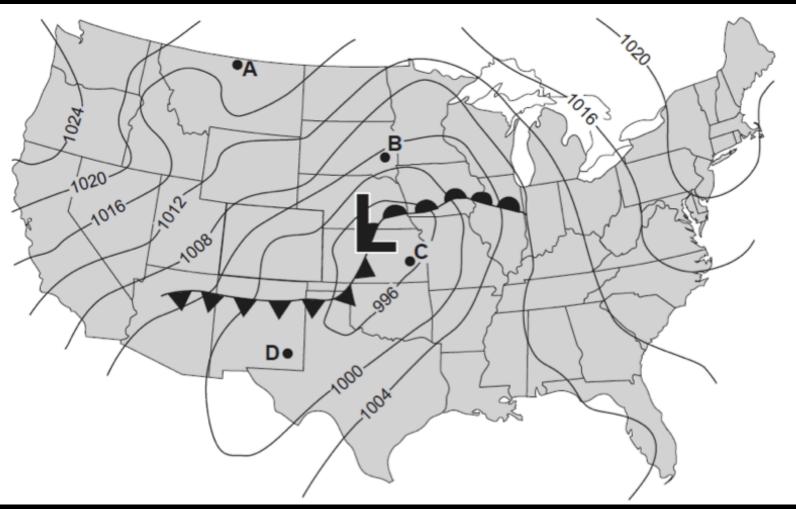
WARM FRONT - A BOUNDARY WHERE LESS DENSE WARM AIR ADVANCES OVER TOP OF MORE DENSE COLD AIR


• WEATHER: LOW CLOUDS AND WIDESPREAD RAINFALL

Warm Front

STATIONARY FRONT – FORMS ALONG A BOUNDARY WHERE NEITHER AIR MASS IS MOVING


• WEATHER: LONG WIDESPREAD RAIN


Stationary Front

<u>OCCLUDED FRONT</u> – A BOUNDARY WHERE A FAST MOVING COLD FRONT PUSHES A WARM AIR ENTIRELY ALOFT

• WEATHER: LONG WIDESPREAD RAIN AND THUNDERSTORMS

Occluded Front

Synoptic Weather